

since its normal derivative has the form

$$\frac{\partial \phi}{\partial n} \Big|_{y=1} = \sum_{n=1,3,\dots}^{\infty} f(x, n) \cos(n\pi) \neq 0$$

whereas, if

$$\phi_c = \frac{8/\pi^2}{\sum_{n=1,3,\dots}^{\infty}} \frac{\sinh\left(\frac{n\pi x}{2}\right) \sin\left(\frac{n\pi y}{2}\right)}{n^2 \cosh\left(\frac{n\pi}{2}\right)} \quad (21, \text{ corrected})$$

then

$$\frac{\partial \phi_c}{\partial n} \Big|_{y=1} = \sum_{n=1,3,\dots}^{\infty} g(x, n) \cos\left(\frac{n\pi}{2}\right) = 0.$$

In fact, (21) satisfies Dirichlet boundary condition $\phi|_{y=1} = 0$.

Fig. 1(a) shows the contours for ϕ (21) while (b) represents the function ϕ_c (21, corrected).

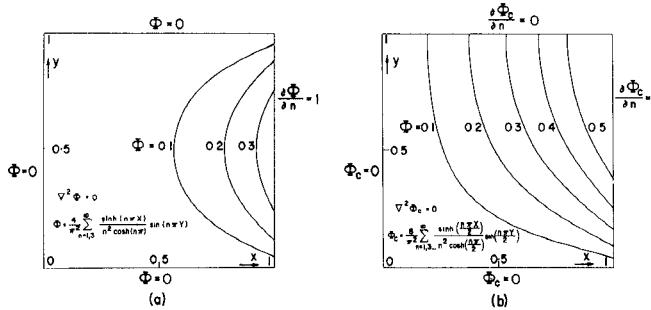


Fig. 1.

Reply² by Alvin Wexler³

Dr. Coen is to be thanked for kindly pointing out an error in (21).

We used the correct equation, as given by Dr. Coen, for all our calculations but erred in preparation of the manuscript.

² Manuscript received May 1, 1973.

³ The author is with the Department of Electrical Engineering, University of Manitoba, Winnipeg, Man., Canada. He is now on leave at the University of Manchester, Manchester, England.

Corrections to "Design Equations for a Class of Wide-Band Bandpass Filters"

EDWARD G. CRISTAL

In the above short paper,¹ the following corrections should be noted: 1) Table III given here should replace Table III on p. 697. 2) In Table V on p. 698, the denominators of the expressions for Y_2 and Y_{N-1} should be C_{11} and C_{NN} , respectively.

TABLE III
PARAMETER RELATIONSHIPS BETWEEN THE EQUIVALENT CIRCUIT OF FIG. 2 AND TABLE II

$$L_{ij} = l_{ij}(Z_A v^{-1})$$

Sections $i = 1$ and $(N-1)$

$$N = L_{12}^{(1)} / L_{11}^{(1)}$$

$$M = L_{12}^{(N-1)} / L_{11}^{(N-1)}$$

$$L^{(i)} = \frac{[vL_{11}^{(i)}]^2}{Z_s^{(i)} + vL_{11}^{(i)}} \text{ ohms}$$

$$[C^{(i)}]^{-1} = \frac{Z_s^{(i)} vL_{11}^{(i)}}{Z_s^{(i)} + vL_{11}^{(i)}} \text{ ohms}$$

$$[C_1^{(i)}]^{-1} = \frac{v \{ L_{11}^{(i)} L_{22}^{(i)} - [L_{12}^{(i)}]^2 \}}{L_{11}^{(i)}} \text{ ohms}$$

Sections $i = 2$ to $(N-2)$

$$Z_1^{(i)} = Z_2^{(i)} = v [L_{11}^{(i)} - L_{12}^{(i)}] \text{ ohms}$$

$$Z_{12}^{(i)} = vL_{12}^{(i)} \text{ ohms}$$

Source and load impedances = Z_A ohms

ACKNOWLEDGMENT

The author wishes to thank A. Stypulkowski of Microlab/FXR and Dr. S. B. Cohn of S. B. Cohn Associates for noting the typographical errors and omissions in Table III and Table V.

Manuscript received April 30, 1973.

The author was with the Department of Electrical Engineering, McMaster University, Hamilton, Ont., Canada. He is now with Hewlett-Packard Co., Palo Alto, Calif.

¹ E. G. Cristal, *IEEE Trans. Microwave Theory Tech. (Short Papers)*, vol. MTT-20, pp. 696-699, Oct. 1972.